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Abstract

In this paper, a novel method is used to analyze the cap-
ture area of general 3D TPN guidance laws. With the
aid of the orthogonal by not orthonormal modified polar
coordinate (MPC), and three modified polar variables
(MPVs), the expression of relative dynamics between
target and missile becomes simple, and no trigonometric
functions are involved, which makes possible the analysis
of capture region for both target and missile with lim-
ited maneuverability. It can be shown that the determi-
nation of the desired capture area requires only the first
two of the MPVs no matter whether the maneuverability
of missile and target are limited or not. The boundary
of the capture region on the two MPVs phase plane can
be shown is composed of stable, unstable manifolds and
a particular trajectory which will be indicated in the
context. For the case of unlimited missile acceleration
and measurable target acceleration, the capture region
can be found analytically, while for the other cases, the
capture region can be obtained graphically.

1 Introduction

_ Although three-dimensional missile guidance have been

" widely used and studied in the guidance literature as was
pointed out in [1] and the reference therein. Deriving the
related capture condition is still one of the main topic
being discussed [2-9]. However, most of the literature
either required a small heading error assumption (2, 3],
or can be applied only to time-invariant navigation con-
stant and two-dimensional case {2-6], most of all, their
derivation were developed in polar or spherical coordi-
nate and involved lots- of trigonometric functions, and
hence, inevitably, were complicated [6-8]. Only a few pa-
pers discussed capturability of guidance law against 3D
maneuvering target [8,9]. However, their results are con-
servative in general, besides, to the author’s knowledge
none of them considered the limited maneuverability of
missile. In this paper, a novel method is used to analyze
the capture area of general three-dimensional true pro-
portional navigation (TPN) guidance laws. With the aid
of the orthogonal but not orthonormal modified polar
coordinate (MPC) [10], and three modified polar vari-
ables (MPVs), at the cost of two redundant state vari-
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ables and two constraints of course, the expression of
relative dynamics between target and missile becomes
very simple, and no trigonometric functions are involved,
which is quite different from the traditional way. In ad-
dition, it was shown in this paper, the three MPVs are
the all variables we need to characterize the target mis-
sile relative dynamics. As will be seen, only first two
of the MPVs, u and v (which will be defined later in
the context), are required to analyze the capture condi-
tion. Hence, for the maneuvering target with measur-
able acceleration, we are able to use the classic phase
plane method to express the capture condition of the
corresponding guidance law analytically. The result is
valid for both time-varying and time-invariant naviga-
tion constant. For the maneuvering target, we assume
two different escape model, namely, worst case target (a
target uses maximum available power) or intelligent tar-
get (the target applies TPN guidance law). The capture
region is able to be shown on the (u, v) plane graphically
in general. It is found that when target acceleration can
be obtained, those two escape models provide almost the
same capture region, however, if the target acceleration
can not be provided, then the intelligent target model
tends to give larger capture region.

2 Dynamic Equations in the MPC

Let the relative position vector (line of sight),r, of target
and missile be defined as
rT=rp—TM = PEr, (2.1)
where rr and 7 are the position vectors of target and
missile in an inertial coordinate OXY Z respectively, p
is the length of line of sight vector, and e, is the unit
vector along line of sight vector. The components of the
state vector of the modified polar coordinate system are

defined as follows [10]:

zp=[tp1 zpP2 Zp3 $P4]T (2.2)

AN 1

tle & 1 1%]". (23)

The state dynamics, are given by differentiating each
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Figur.e_ 1: Engagement geometry

component of state vector zp:

BP — for) +olop)ar—an),  (24)
where ar and aps are accelerations of target and missile
respectively, and
[ Tp2
—~2TpyTp2 — (ThyTP2)TP1
—ZTpP3Tp4q
L (zhozpe) ~ 7}y
033
zp3(ls — zp17h))|
1x3
L $P3$£1

flap) = (2.50)

9(zp) = (2.5b)

To describe the relative dynamics between missile and
target in a 3-Dimensional space, six states are required.
However, we utilized eight states instead, hence, there
are two constraints on the above given states, namely,

zhzp1 = 1,75,2p2 = 0. (2.6)

Note that zps is not a unit vector in general, indeed -

its magnitude is equal to the magnitude of the angular
velocity of line of sight. Since the angular velocity of line
of sight, §2, can be expressed as

X7t
Q= 7 =Zzp1 X Tp2, (27)
it follows that
(zp1 x .’l:pg)T(zpl X Tpg) = zgzng =0TQ. (2.8)

By taking this orthogonal but not orthonormal coordi-
nate system (zp1,zp2,2), the analysis in of guidance
law in this paper becomes easy.

If we express ar and ajs in the (zp1, Tp2,2) coordinate
system as

ar = ar1zpi + aT2——x—Pz— + aTQ—""Q—, (2.9)
VaraQ VOTQ
' Q

aM = am1zTp1 + aMT-% + aMQ—J.gTT_‘..———d, (2.10)

and after applying the constraints (2.6), we then have
the following three coupled scalar differential equations:

d
SEPe= 0TQ — 2%, + zp3(ars —an), (2.11)

%V OTQ = —2zpyaV QrQ + xps(aTg - aM2)7(2A12)

—Zp3 = —TpP3TP4. (2.13)

dt
Remark 2.1. From (2), it is obvious that the compo-
nents in the §} direction of both a7 and aps do not in-
fluence the range between target and missile. However,
it can be used to increase the system observability [12].

For the reason that will be explained later, we introduce
the following modified polar variables (MPVs),

AT A [QTQ A
uz\/:_;_, v= ;P_a-’ w=./Tp3. (2.14)

Then, it can be shown that

d: 1
Yo {—§u2 +v? +ar1 —arn } w, (2.15a)

dt

dv 3

— =q—-= - 2.15b
7 { 2uv+an aMQ}w, (2.15b)
dw 1,

ket . 2.

o Suw (2.15¢)

Next, we change the independent variable from £ to 7 as
defined by

dr & wat, (2.16)
which in turn yields '

du 15 4
Pl +vitarr —ary,  (2.17a)
dv
= == — 2.
g 2uv +ars —apmo, (2.17b)
dw 1

In this paper, we adopt the definition of “capture” of
target given in [1}, and define the capture region as the
follows:

Definition 2.1. The capture of target by missile is char-
acterized by a finite final time ¢; at which the range p(ty)
is equal to zero. This can be formulated as

Ity < oo such that p(ty) = 0. (2.18)
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To avoid the turn rate of the line of sight, i.e. ||é.|, from
infinite, we also require that

QT()Qs) _
zp3(ts) ’

Definition 2.2. The capture region is the region on the
(zpa, VT Q)-plane or (u,v)-plane such that whenever
the initial states (zpa(to), /T (t0)Q(t0)) or (u(0),v(0))
are started inside this region, the state trajectories
will lead to (zp4a(ts), VT (t7)ts)) = (—o0,8y) or
(u(ts),v(ts)) = (~00,0), where Q; is a nonnegative fi-
nite number.

pltllen(er)ll = 0 or (2.19)

3 Unlimited aps and ar with Measurable ar

We at first consider the case when the target acceleration
ar can be obtained and the magnitude of missile’s accel-
eration aps is unlimited. The following result is similar
to the one in [1], however by virtue of the MPVs, the
sufficient condition (equation (83) in [1]) can be relaxed.

Theorem 3.1. Let the guidance law be

[92K¢)

TPy
ay = ap — a(xp)—xm Blzp)=—zp2 — v(zp)Q
zp3 Tp3

(3.1)

then we have the following two cases:
Case 1: If the following scalar functions satisfy
a(zp) < ~1,2 < f(zp), I(zp)| < 00,

and the missile starts its trajectory with any initial con-
dition except

zpa(to) > 0 and Q7 (t0)Q(to) = 0,
then the capture of the target always occurs in a finite

time ty,
- 1

ty <ty — ——=,
.f ° :I:p4(t0)

with |laa (£)]] < 00,V ¢ > to.

Case 2: If the constant oynae and scalar functions
a(zp), B(zp),y(zp) satisfy

-1 < a(zp) £ @maz, 2 < B(zp), |7(zP)| < o0,

and the missile starts its trajectory with initial condition
such that

-'L'P4(t0) <0, (amam + 1)QT(t0)Q(tO) < 'T2P4(t0)v

then the capture of the target always occurs in a finite
time 2y,

zpa(to)
——e <t <
zpa(to) = 7 = (Gmaz + 1O (t0)(t0) — 04 (0)”

with |lap(2)]| < 00,V t > to. Furthermore, if a(zp) =
a,B(zp) = B for all zp € R8, where a, § are constants
and a > —1 ,B > 2. Then the capture of target always
occurs in a finite time ¢ ¢ if and only if

zpa(to) <0, (a+1)Q7 (t0)2(to) < (B—1)z4(to). (3.2)

Proof: For details and an alternative way of the proof
please refer to [11,12].

4 Limited aj; and ar with Measurable ar

Now we consider the case when target acceleration, ar,
is measurable, and both the magnitude of target and
missile’s acceleration (manerverability) are limited, that
is,

Q
ar = satt [(xf;laT)zpl + (xgzaq") QTQ ar) QTQ] ,

QTQ TPy
am = saty |ar — a(zp) zp1 — Blap)=—zps — v(zP)Q
ZpP3 Tp3

where satr and satys represent the saturation function
for target and missile respectively. Since (z pl,:rpg,Q)
is an orthogonal coordinate system, for simplicity, it is
reasonable to assume that saty[-] and satps|-] both are
independent saturation functions, hence,

T wEZaT zp2
ar = satr: [IplaT} xp1 + satre [ ]

VOTQ | VOTQ
OTar Q
+satTa [\/57’_] \/(TT'— (4.1)

and

QTQ} .
TP1
ZTP3

+satae [arz - ﬁ(xP)z—PéVQTQ} \/aéli;ﬁ

VorQ'

ap = satan [aTl — alzp)

+ satma [aTn - ‘y(xp)\/ QTQ] (4.2)

where for 1 = 1,2,9Q,

—0Timaz i T < —ATimasz,
satrifz] = ¢ =z if ~aTimar < T < aTimaz,
ATimaz if arimaz <,

if £ < —apimaz,
if —arimer €T < aptimazs

—QMimaz
sataifz] =< = i
if arfimaz < T-

A Mimax

It is easy to see that equations (2.17) can be written as

d 1

Efr—l = —u? +v% + ar +sata [—ar1 + a(zp)(¥3a)
d 3

B% =~zu + ar2 + satya [—ar2 + B(zp)uv], (4.3b)
dw 1

= 4.
dr U (4.3¢)
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respectively. For small 4 and v, the behavior of the state
trajectory around (0, 0) is similar to the one discussed in
Theorem 3.1, hence, B(zp) > 2, is enough to guarantee
the existence of capture area.

Equations (4.3) are highly nonlinear, the exact capture
region can only be determined graphically at this mo-
ment. In this paper we consider the following two cases
regarding the target escape model.

4.1 Target uses maximum available power
From target’s aspect, it is reasonable to assume that
target ut:ilizes maximum available power to maximize

d__u and — Y to escape, therefore,
dr dr

aT1 = QT1maz, T2 = AT2maz, ATQ = 0. (44)

Figure 2 shows the mushroom type phase portraits on
the (u,v) plane of the differential equations (4.3) when
o = l,ﬂ(zp) = 3,aT1maz = OT2maz = 890, CM1imaz =
aMomaer = 20go. Apparently, the boundary of the cap-
ture is defined by one manifold connecting the unsta-
ble equilibrium point (—-12.522,6.261) and the saddle
equilibrium point (0,0), and one manifold defined by
v < 0,v = 0, and one state trajectory connecting the
equilibrium point (—12.522,6.261) and (—o0,0).

all =784

u'm =05t ¢V +aT1 + sat( - aT1 +12,20g0)
aT2=784

g0=98
v'=-3/2uv+aT2+sat{-aT2+3uv,20g0) .

s ; -
m»ﬂﬂﬂzﬁaaaeaaaassﬂsxxx
TAAIAS S5 555Ny
]ﬂﬂzaaaaaeaeasﬁﬂﬁxx\
)')1/7/)/7,)—-)-—)-—}——)—-)——7—)*)\)&\;\;\
ﬁﬂ))aa : - ;

asr

Figure 2: The phase portrait for a = 1,8 = 3,871maz =
aT2maz = 890, CMimaz = AM2maz = 2090, and
ar1 = GTimaz, T2 = QT2mac, AT iS Measurable.

4.2 Intelligent target :
For an intelligent target using the three dimensional
IPN {8], we have

(928Y)
ar = satp [/\T*——.'L'Pl - /\Tz—’pizm] , (4.5)
zp3 zp3

and similarly, by assuming 1ndependent saturation, we
have

QT
a1 = satm {)\T———Q] = satp; [)\T’U2] ,
zp3

T ago = satgo [ TP \/QT ] = satpe [-Aruv],

aprq = 0.

Again, Figure 3 shows the mushroom type phase por-
traits on the (u,v) plane of the differential equations
(43) when a =1, ﬂ(:EP) = 3,aM1maz = AM2maz = 2090,
and the intelligent target is performing an escape with
AT = 5,0T1maz = AT2maz = 89o. Similarly, the bound-
ary of the capture is defined by one manifold connecting
the unstable equilibrium point (—12.522,6.261) and the
saddle equilibrium point (0, 0), and one manifold defined
by u < 0,v = 0, and one state trajectory connecting the
equilibrium point (—12.522,6.261) and (—o0,0). It can
also be seen that finite saturation level brings the unsta-
ble equilibrium point from infinite distance (—o0,00) to
finite distance. Comparing the above two cases reveals
that both maintain almost the same capture region.

g0=98  altasal(5v%78.4)

u'=-050 +v?+ aT1 +sal( - aT1 +v2,20 g0}
aT2=sal{ - 5uv.78.4)

v'=-3/2uv+aT2+sat(-aT2+3 uv,z20 g0}

a0k /’Zﬂzﬁd—é—)—a—»—)—)—)%s\)s\\\
A ﬁﬂzaaa—a—a—a—aﬁ—)\)\)s\g\\x\.
/' 2//2/72/)——)-)-9—»—»-)»\)\)\\\;\ .

/7’2’)/)22—).—)-}-—)-)_)\>\)\l
N\)
TAD A e

35F
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Figure 3: The phase portrait for a = 1,8 = 3,Ar =
5,aT1maz = OT2mez = 890, AMimaz =
aM2max = 20go, and an intelligent target with
ar is measurable.

5 Limited aj) and ar with Unmeasurable ar

Next, let’s consider the case when the target accelera-
tion, ar, can not be obtained, and the target maneuver-
ability is limited. By assuming independent saturation
of the missile’s acceleration, the guidance law is the fol-
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lowing,
QTa
apm = satpn |—a(zp)—— | zp1
Zp3
$P4\/"§-— 23P2
+satara .’L‘p) QrQ
+ satyro I:—-’y(z‘P)V QTQ]

E

Joro O

Similarly, we then have the corresponding differential
equations in the (u,v,w) space,

Zii_: = —%'u? + % + a1 + sata [a(zp)v?],(5.22)
dv 3

— = ——uv + ars + satpz [B(zp)uv], (5.2b)
dr 2

dw

E = —E’U/U). (520)

Likewise, if a(zp), f(zp) and ari,are are functions of
u and v only, then the differential equations for © and v
will be decoupled from the one for w. Note that B(zp)
must be chosen such that Ju,v at which point % < 0.
Therefore, the lower bound of B(zp) may need to be
larger than 2 to ensure the existence of capture area for
missile with limited acceleration.

To determine the target’s policy to escape, let’s do the
following analysis. Assume that |ja|| i$ unlimited. Af-
ter some algebraic manipulations, the differential equa-
tions for p are given as follows

d?p d (zps\ _ oTq

prolalien (a) = [a(zp) + 1]}))—3 +ar1, (5.3a)
3 v

T~ later) + 1 {1+ 2(8(er) - 2) 222070

+2araV QTQ} %am + — 2re a( Hp.3b)

Apparently, when target tries to escape, it uses the max-
imum available power to maximize § and P, hence, we
may assume that during the intercepting process
ari = aT1maz, and arz = sgn(a(zp) + 1)ar2mas-

Henceforth, ar2 = —ar2maz when a(zp) < —1. This is
contrary to the point of view of maximizing Zﬁ , fi’:’ only.
Although the differential equations (5.2) describing the
relative dynamics of target and missile becomes with lim-
ited maneuverability are involved, however, we still may
express the capture area on the (u,v) plane graphically.
Similarly, we consider the following two cases:

5.1 Target uses maximum available power
Assume target utlhzes available maximum power to max-
imize j and 2 (or p, p), therefore,

aT1 = AT1maz, OT2 = GT2mas a0d arq = 0.

Figure 4 gives the mushroom type phase portraits on the
(u,v) plane of the differential equations (5.2) when o =

1, B(xP) = 6,aMimaz = CM2maz = 20go, and target is
utilizing maximum available power arimaez = aT2maz =
8go. The capture region is bounded by the following
three curves:

1. the two stable manifolds of the saddle equilibrium
point (—12.8138,1.3596),

2. one particular trajectory starting from
(—15.9282,4.9221) and approaching to (—oo, 0).

One interesting observation is that all the trajecto-
ries inside the capture region eventually approach to
the one of the unstable manifold of the saddle point
(—12.8138,1.3596). Note that in this case S(zp) = 3
is not enough to provide capture region.

aT1=784
aT2=78.4

u'=-0.51% + V2 + aT1 +5al(v2,20 g0)
v'm-15uv+al2+sat(6 u v.20 g0)

g0=98

prys ﬂ/’ﬁ)lﬁh——)—)%—-)—)—)—)—é%%ﬂﬂ\\\
ﬂ)ﬁﬁ.ﬁa—)—%—)—)—é—)—)—)ﬂgg\\\\
ﬂﬁzazaaaa—aaa_)ﬁﬂﬁﬂxx\
AAAA 5 = SRR R
AAA 224-—)—9—)2—4—>——>a->s\;\3 N
30f 7’~ }'2/7/717—7——)—-)/)-9-»-)\)\)\)\)\_; N
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Figure 4: The phase portrait for @ = 1,8 = 6,aT1maz =
aT2max — 890, AMimaz = AM2maz — 2090, with
a7 is not measurable.

5.2 Intelligent target

T
a1 = satm l:)\Tw] = satp [/\T’UZ] ,
zp3

ary = satpo [ )\TEVQTQ] = satpa [~ Apuv],
arq = 0.

Figure 5 shows the mushroom type phase portraits
on the (u,v) plane of the differential equations (5.2)
when a = 1,8(zxp) = 6,aMimaz = @M2mez = 2090,
and the intelligent target is performing an escape with
AT = 5,8T1imaz = AT2maex = 890. The capture region is
bounded by the following four curves:

1. the stable manifold of the saddle equilibrium
point (—8.0739,2.1578) connecting the unsta-
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ble equilibrium point (—15.9282,4.9221) and
(-8.0739,2.1578),

2. the stable manifold of the saddle equilibrium point
(—8.0739,2.1578) connecting (—8.0739,2.1578)
and (0,0),

3. the unstable manifold © < 0,v =0,

4. one particular  trajectory starting from
(—15.9282,4.9221) and approaching to (—o0,0).

Similarly, all the trajectories inside the capture region
eventually approach to the one of the unstable mani-
fold of the saddle point (—8.0739,2.1578). Again, in this
case B(zp) = 3 is not enough to provide capture region.
Comparing the above two cases indicates that when tar-
get utilize maximum available power to escape has the
smaller capture region.

u =05 + ¥+ aT1 + sat(v3,20 gO) g0=98

aT1 = sal(5 v,78.4)
v'=-3/2uv+al2 +sat(6 u v,20 g0)

aT2 =sat{ -~ 5uv,78.4)

. am—
Prys /’ﬂﬂﬂ/)ﬁﬁ—)é—é——)—)‘)ﬂ\)\)\,‘\)\\\
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Figure 5: The phase portrait for @« = 1,8 = 6, Ar =
5,(1T1maz =  OaT2maz = 890) AM1imaz =
amamaz = 20go, and an intelligent target with
ar is not measurable.

6 Conclusion

The relative dynamics between target and missile is for-
mulated in an orthogonal but not orthonormal Mod-
ified polar coordinate. With the cost of two redun-
dant states, the expression of the differential equations
are simple and no trigonometric functions are involved.
Then the author introduces three modified polar vari-
ables. It turns out that the three corresponding differ-
ential equations are all we need to analyze the general 3D
TPN guidance law. In addition, only two of the MPVs,
namely u and v are required to analyze the intercept of
target for the given definition. Owing to this, for the first
time on literature, we would be able to show the capture
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region of TPN guidance law for both target and missile
with limited maneuverability. For the unlimited maneu-
verability missile and target, we derived the bound of
final time, ts, and the analytical expression of capture
region. By virtue of the independent saturation assump-
tion of target and missile’s acceleration, we still are able
to identify the capture region graphically on the (u,v)
plane. Finally, the following conclusions can be drawn
to increase the capture region from the missile’s perspec-
tive: 1. Select the navigation variable B(zp) as large as
possible , choose the navigation variable a(zp) as small
(or negative) as possible. 2. Increase the saturation level
of missile’s endurable acceleration ap;. 3. Provide esti-
mate of target’s acceleration ar.
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