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Abst rac t  

In this paper, a novel method is used to analyze the cap- 
ture area of general 3D TPN guidance laws. With the 
aid of the orthogonal by not orthonormal modified polar 
coordinate (MPC), and three modified polar variables 
(MPVs), the expression of relative dynamics between 
target and missile becomes simple, and no trigonometric 
functions are involved, which makes possible the analysis 
of capture region for both target and missile with lim- 
ited maneuverability. It can be shown that the determi- 
nation of the desired capture area requires only the first 
two of the MPVs no matter whether the maneuverability 
of missile and target are limited or not. The boundary 
of the capture region on the two MPVs phase plane can 
be shown is composed of stable, unstable manifolds and 
a particular trajectory which will be indicated in the 
context. For the case of unlimited missile acceleration 
and measurable target acceleration, the capture region 
can be found analytically, while for the other cases, the 
capture region can be obtained graphically. 

1 In t roduct ion  

Although three-dimensional missile guidance have been 
widely used and studied in the guidance literature as was 
pointed out in [I] and the reference therein. Deriving the 
related capture condition is still one of the main topic 
being discussed [2-91. However, most of the literature 
either required a small heading error assumption [2,3], 
or can be applied only to timeinvariant navigation con- 
stant and two-dimensional case [2-61, most of all, their 
derivation were developed in polar or spherical coordi- 
nate and involved lots- of trigonometric functions, and 
hence, inevitably, were complicated [S-SI. Only a few pa- 
pers discussed capturability of guidance law against 3D 
maneuvering target [S, 91. However, their results are con- 
servative in general, besides, to the author’s knowledge 
none of them considered the limited maneuverability of 
missile. In this paper, a novel method is used to analyze 
the capture area of general three-dimensional true pro- 
portional navigation (TPN) guidance laws. With the aid 
of the orthogonal but not orthonormal modified polar 
coordinate (MPC) [lo], and three modified polar vari- 
ables (MPVs), at the cost of two redundant state vari- 

ables and two constraints of course, the expression of 
relative dynamics between target and missile becomes 
very simple, and no trigonometric functions are involved, 
which is quite different from the traditional way. In ad- 
dition, it was shown in this paper, the three MPVs are 
the all variables we need to  characterize the target mis- 
sile relative dynamics. As will be seen, only first two 
of the MPVs, U and v (which will be defined later in 
the context), are required to analyze the capture condi- 
tion. Hence, for the maneuvering target with measur- 
able acceleration, we are able to use the classic phase 
plane method to express the capture condition of the 
corresponding guidance law analytically. The result is 
valid for both time-varying and time-invariant naviga- 
tion constant. For the maneuvering target, we assume 
two different escape model, namely, worst case target (a 
target uses maximum available power) or intelligent tar- 
get (the target applies TPN guidance law). The capture 
region is able to be shown on the (U, U) plane graphically 
in general. It is found that when target acceleration can 
be obtained, those two escape models provide almost the 
same capture region, however, if the target acceleration 
can not be provided, then the intelligent target model 
tends to give larger capture region. 

2 Dynamic Equations i n  the MPC 

Let the relative position vector (line of sight),r, of target 
and missile be defined as 

r = rT - r1Z.I = per, 

where rT and r M  are the position vectors of target and 
missile in an inertial coordinate OXY2 respectively, p 
is the length of line of sight vector, and eT is the unit 
vector along line of sight vector. The components of the 
state vector of the modified polar coordinate system are 
defined as follows [lo]: 

(2.1) 

The state dynamics, are given by differentiating each 
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Figure 1: Engagement geometry 

component of state vector x p :  

where UT and U M  are accelerations of target and missile 
respectively, and 

To describe the relative dynamics between missile and 
target in a 3-Dimensional space, six states are required. 
However, we utilized eight states instead, hence, there 
are two constraints on the above given states, namely, 

Note that xp2 is not a unit vector in general, indeed 
its magnitude is equal to the magnitude of the angular 
velocity of line of sight. Since the angular velocity of line 
of sight, 52, can be expressed as 

it follows that 

( ~ p l  x ~ p ~ ) ~ ( ~ p l  x ~ p 2 )  = ~ $ 2 2 ~ 2  = RTR.  (2.8) 

By taking this orthogonal but not orthonormal coordi- 
nate system ( z p l ,  z p 2 ,  R), the analysis in of guidance 
law in this paper becomes easy. 

If we express aT and U M  in the ( x p l ,  xp2 ,  M) coordinate 
system as 

and after applying the constraints (2.6), we then have 
the following three coupled scalar differential equations: 

(2.13) 

Remark 2.1. From (2), it is obvious that the compo- 
nents in the R direction of both UT and U M  do not in- 
fluence the range between target and missile. However, 
it can be used to increase the system observability [12]. 

For the reason that will be explained later, we introduce 
the following modified polar variables (MPVs), 

I 

U = -  A xp4 v e  /%, w &. (2.14) 
X P 3  

Then, it can be shown that 

(2.15~) 

Next, we change the independent variable from t to r as 
defined by 

(2.16) d r  = wdt, 

which in turn yields 

A 

dw 1 
dr 2 
_ -  - --uw. (2.17~) 

In this paper, we adopt the definition of "capture" of 
target given in [l], and define the capture region as the 
follows: 

Definition 2.1. The capture of target by missile is char- 
acterized by a finite final time t f  at which the range p ( t f )  
is equal to zero. This can be formulated as 

3tf  < 00 such that p ( t f )  = 0. (2.18) 
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To avoid the turn rate of the line of sight, i.e. 11&11 ,  from 
infinite, we also require that 

Definition 2.2. The capture region is the region on the 
(xp4 ,  m ) - p l a n e  or (U, U)-plane such that whenever 
the initial states (xpq( to) ,  d m )  or (u(O),v(O)) 
are started inside this region, the state trajectories 
will lead to ( x p q ( t f ) ,  
( y ( t f ) , v ( t f ) )  = 
nite number. 

3 Unlimited U M  and UT with Measurable a~ 

We at first consider the case when the target acceleration 
CZT can be obtained and the magnitude of missile's accel- 
eration UM is unlimited. The following result is similar 
to the one in [l], however by virtue of the MPVs, the 
sufficient condition (equation (83) in [l]) can be relaxed. 

Theorem 3.1. Let the guidance law be 

. ,  
then we have the following two cases: 

Case 1: If the following scalar functions satisfjr 

d X P )  -192 < P ( X P ) ,  Ir(xp)l  < CQ, 

and the missile starts its trajectory with any initial con- 
dition except 

xpq(to)  2 0 and QT(to)R( to)  = 0, 

then the capture of the target always occurs in a finite 
time t f ,  

tf < t o  - ~ 

1 
xP4(tO) ' 

with IlaM(t)(I  < m,V t 2 to .  

Case 2: If the constant amax and scalar functions 
~ ( x P ) ,  P ( x P ) ,  Y ( Z P )  satisfy 

-1 I 4 . p )  I amax,  2 < P ( x P ) ,  I ~ ( x P ) ~  < 00, 

and the missile starts its trajectory with initial condition 
such that 

Z P 4 ( t O )  < 0, (Q!max + 1)RT(t0)fl(tO) < x$4(tO), 

then the capture of the target always occurs in a finite 
time t f  

with IlaM(t)ll < m , V  t 2 t o .  Furthermore, if a ( z p )  = 
a, P ( x p )  = ,B for all x p  E R8, where a, P are constants 
and Q! > -1,p > 2. Then the capture of target always 
occurs in a finite time t f  if and only if 

Z P 4 ( t O )  < 0, (a+l)nT(to)fl(h) < ( P - 1 ) X g 4 ( t O ) .  (3.2) 

Proof: 
please refer to [11,12]. 

For details and an alternative way of the proof 

4 Limited UM and UT with Measurable UT 

Now we consider the case when target acceleration, UT,  
is measurable, and both the magnitude of target and 
missile's acceleration (manerverability) are limited, that 
is 

where satT and satM represent the saturation function 
for target and missile respectively. Since ( x p l ,  xp2 ,  R) 
is an orthogonal coordinate system, for simplicity, it is 
reasonable to assume that  sat^[.] and satM[.] both are 
independent saturation functions, hence, 

and 

(4.2) 
R + SatMO [a,, - y ( x p ) m ]  - 47" 

It is easy to see that equations (2.17) can be written as 

(4.3c) 
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respectively. For small U and v, the behavior of the state 
trajectory around (0,O) is similar to the one discussed in 
Theorem 3.1, hence, ,B(xp)  > 2,  is enough to guarantee 
the existence of capture area. 

and similarly, by assuming independent saturation, we 
have 

UT1 = satT1 AT- = satT1 [xTv2] , 

U T 2  = satT2 [ - - A T = ~ ]  = satT2 [-ATuvl, 

aTn = a. 

Equations (4.3) are highly nonlinear, the exact capture I El 
region can only be determined graphically at this mo- 
ment. In this paper we consider the following two cases 
regarding the target escape model. 

- 

XP3 

4.1 Target uses maximum available power 
From target's aspect, it is reasonable to assume that 
target utilizes maximum available power to maximize 
du. dv - and - to escape, therefore, 
d r  d r  

Figure 2 shows the mushroom type phase portraits on 
the ( U ,  v) plane of the differential equations (4.3) when 

aM2max = 2090. Apparently, the boundary of the cap- 
ture is defined by one manifold connecting the unsta- 
ble equilibrium point (-12.522,6.261) and the saddle 
equilibrium point (0, 0), and one manifold defined by 
U 5 0,v = 0, and one state trajectory connecting the 
equilibrium point (-12.522,6.261) and (-m, 0) .  

0 = 1 , p ( z P )  = 3,~Tlmaz = aT2mas = 8g0,aMlmaz = 

Again, Figure 3 shows the mushroom type phase por- 
traits on the ( q v )  plane of the differential equations 

and the intelligent target is performing an escape with 
AT = 5 , u ~ l ~ ~ ~  = aT2max = 890. Similarly, the bound- 
ary of the capture is defined by one manifold connecting 
the unstable equilibrium point (-12.522,6.261) and the 
saddle equilibrium point (0 ,  0), and one manifold defined 
by U 5 0, 'U = 0, and one state trajectory connecting the 
equilibrium point (-12.522,6.261) and (-m, 0) .  It can 
also be seen that finite saturation level brings the unsta- 
ble equilibrium point from infinite distance (--03, 03) to 
finite distance. Comparing the above two cases reveals 
that both maintain almost the same capture region. 

(4.3) when a 1, P ( X p )  = 3, U M l m a x  = aM2maz = 2og0, 

u ' =  -0.5 J + v 2 +  aT1 +sal( - aT1 + $,20~0)  
Y '  - - 3 2  U v + aT2 + sal( - aT2 +3 U v.20 go) 

(10.98 aT1-784 
aT2 = 78 4 

U - - 0  5 + + + aT1 +mi( - aTl + ~ . 2 o g o )  
Y I - 3 2  U v + aT2+nal( - aT2 +3 U v.2ogO) 

-M -15 -10 -5 0 5 10 15 20 
U 

Figure 3: The phase portrait for cy = 1,b = ~ , X T  = 
5, a T l m a z  = a T Z m a z  = 8go, a M l m a z  = 
a M 2 m ~ z  = 20g0, and an intelligent target with 
aT is measurable. 

4.2 Intelligent target 
For an intelligent target using the three dimensional 
IPN [SI, we have 

5 Limited UM and UT with Unmeasurable UT 

Next, let's consider the case when the target accelera- 
tion, UT, can not be obtained, and the target maneuver- 
ability is limited. By assuming independent saturation 

- AT-xp2 XP3 7 (4.5) of the missile's acceleration, the guidance law is the fol- xp4 I 
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lowing, 

Similarly, we then have the corresponding differential 
equations in the ( U ,  v, w) space, 

d u  1 
- = --u2 + v2 + U T 1  + satM1 [cy(xp)v2] , (5.2a) dr 2 
dv 3 
- = ---uv + a ~ 2  + s a t ~ z  [/3(zp)uv], 
d r  2 

(5.2b) 

dw 1 
d r  2uww. 
- - _ _  - ( 5 . 2 ~ )  

Likewise, if a ( x p ) , p ( x p )  and aTl,aT2 are functions of 
U and v only, then the differential equations for U and v 
will be decoupled from the one for w. Note that P ( z p )  
must be chosen such that 3u, v at which point 2 < 0. 
Therefore, the lower bound of /3(xp) may need to be 
larger than 2 to ensure the existence of capture area for 
missile with limited acceleration. 

To determine the target's policy to escape, let's do the 
following analysis. Assume that l l u ~ l l  is unlimited. Af- 
ter some algebraic manipulations, the differential equa- 
tions for p are given as follows 

Apparently, when target tries to escape, it uses the max- 
imum available power to maximize p and p ,  hence, we 
may assume that during the intercepting process 

UTI = W"Tmaz1 and a ~ 2  = sgn(cy(xp) + 1)aTZmar. 

Henceforth, UT2  = - a ~ 2 ~ ~ ~  when a(zp)  < -1. This is 
contrary to the point of view of maximizing %,2 only. 
Although the differential equations (5.2) describing the 
relative dynamics of target and missile becomes with lim- 
ited maneuverability are involved, however, we still may 
express the capture area on the ( U ,  v) plane graphically. 
Similarly, we consider the following two cases: 

5.1 Target uses maximum available power 
Assume target utilizes available maximum power to max- 
imize 2 and $ (or p ,  p), therefore, 

aTi = aTlmax, W-2 = aT2maz and = 0. 

Figure 4 gives the mushroom type phase portraits on the 
( U ,  v) plane of the differential equations (5.2) when cy = 

1,/3(zp) = 6,aMlmaz = aMZmaz = 20g0, and target is 
utilizing maximum available power UTlmax = U ~ 2 m a z  = 
8g0. The capture region is bounded by the following 
three curves: 

1. the two stable manifolds of the saddle equilibrium 
point (-12.8138,1.3596), 

2. one particular trajectory starting from 
(-15.9282,4.9221) and approaching to (-CO, 0). 

One interesting observation is that all the trajecto- 
ries inside the capture region eventually approach to 
the one of the unstable manifold of the saddle point 
(-12.8138,1.3596). Note that in this case /3(xp) = 3 
is not enough to provide capture region. 

U ' = - 0.5 d + ? + aT1 + sal(v2.20 go) 
Y ' -  - 1 .5  U v + aT2 +$ail6 U v.20 go) 

go = 9.8 aTl = 78 4 
aT2 = 76.4 

I .  . I .  . . 1 I . I  
-20 -15 -10 -5 0 5 10 15 20 

Figure 4: The phase portrait for a = 1, = 6 ,  a n m a z  = 
a ~ z m a z  = 20g0, with aTzmaz = 8g0, aMimaz 

aT is not measurable. 

5.2 Intelligent target  

aTn = 0. 

Figure 5 shows the mushroom type phase portraits 
on the (u ,v )  plane of the differential equations (5.2) 
when = 1,/3(xp) = 6,aMlmaz = aM2maz = 20g0, 
and the intelligent target is performing an escape with 
AT = 5, aTlmaa: = aT2max = 8go. The capture region is 
bounded by the following four curves: 

1. the stable manifold of the saddle equilibrium 
point (-8.0739,2.1578) connecting the unsta- 
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ble equilibrium point (-15.9282’4.9221) and 
(-8.0739,2.1578), 

2. the stable manifold of the saddle equilibrium point 
(-8.0739,2.1578) connecting (-8.0739,2.1578) 
and (O ,O) ,  

3. the unstable manifold U < 0, v = 0, 

4. one particular trajectory starting from 
(-15.9282,4.9221) and approaching to (--CO, 0). 

Similarly, all the trajectories inside the capture region 
eventually approach to the one of the unstable mani- 
fold of the saddle point (-8.0739’2.1578). Again, in this 
case ,B(zp) = 3 is not enough to provide capture region. 
Comparing the above two cases indicates that when tar- 
get utilize maximum available power to escape has the 
smaller capture region. 

QO = 9 8 aTl =sa@ 2.78 4) 
aT2 = sat( - 5 U v.78 4) 

U = - 0 5 d + v2+ aTl + sal[v2.20 go) 
Y E - 312 U Y + aTZ + sa116 U v.20 go) 

-20 -15 -10 -5 0 5 IO 15 20 ” 

Figure 5:  The phase portrait for a = 1,p = ~ , X T  = 
5, arlmaz aT2max = 8g0, aMimaz = 
a ~ 2 ~ ~ ~  = 20g0, and an intelligent target with 
aT is not measurable. 

6 Conclusion 

The relative dynamics between target and missile is for- 
mulated in an orthogonal but not orthonormal Mod- 
ified polar coordinate. With the cost of two redun- 
dant states, the expression of the differential equations 
are simple and no trigonometric functions are involved. 
Then the author introduces three modified polar vari- 
ables. It turns out that the three corresponding differ- 
ential equations are all we need to analyze the general 3D 
TPN guidance law. In addition, only two of the MPVs, 
namely U and U are required to analyze the intercept of 
target for the given definition. Owing to this, for the first 
time on literature, we would be able to show the capture 

region of TPN guidance law for both target and missile 
with limited maneuverability. For the unlimited maneu- 
verability missile and target, we derived the bound of 
final time, t f l  and the analytical expression of capture 
region. By virtue of the independent saturation assump- 
tion of target and missile’s acceleration, we still are able 
to identify the capture region graphically on the (u,v) 
plane. Finally, the following conclusions can be drawn 
to increase the capture region from the missile’s perspec- 
tive: 1. Select the navigation variable P ( z p )  as large as 
possible , choose the navigation variable ~ ( z p )  as small 
(or negative) as possible. 2. Increase the saturation level 
of missile’s endurable acceleration a ~ .  3. Provide esti- 
mate of target’s acceleration a ~ .  
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